Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

fhl1 gene of the fission yeast regulates transcription of meiotic genes and nitrogen starvation response, downstream of the TORC1 pathway.

Identifieur interne : 000690 ( Main/Exploration ); précédent : 000689; suivant : 000691

fhl1 gene of the fission yeast regulates transcription of meiotic genes and nitrogen starvation response, downstream of the TORC1 pathway.

Auteurs : Emese Pataki [Hongrie] ; Ronit Weisman [Israël] ; Matthias Sipiczki [Hongrie] ; Ida Miklos [Hongrie]

Source :

RBID : pubmed:27165118

Descripteurs français

English descriptors

Abstract

Environmental changes, such as nutrient limitation or starvation induce different signal transducing pathways, which require coordinated cooperation of several genes. Our previous data revealed that the fhl1 fork-head type transcription factor of the fission yeast could be involved in sporulation, which was typically induced under poor conditions. Since the exact role of Fhl1 in this process was not known, we wanted to identify its downstream targets and to investigate its possible cooperation with another known regulator of sporulation. Gene expression and Northern blot analysis of the fhl1∆ mutant strain revealed the target genes involved in mating and sporulation. Our results also showed that Fhl1 could regulate nutrient sensing, the transporter and permease genes. Since the majority of these genes belonged to the nitrogen starvation response, the possible cooperation of fhl1 and tor2 was also investigated. Comparison of their microarray data and the expression of fhl1 + from a strong promoter in the tor2-ts mutant cells suggested that one part of the target genes are commonly regulated by Fhl1 and Tor2. Since the expression of fhl1 + from a strong promoter could rescue rapamycin and temperature sensitivity and suppressed the hyper-sporulation defect of the tor2-ts mutant cells, we believe that Fhl1 acts in TOR signaling, downstream of Tor2. Thus, this work shed light on certain novel details of the regulation of the sexual processes and a new member of the TOR pathway, but further experiments are needed to confirm the involvement of Fhl1 in nutrient sensing.

DOI: 10.1007/s00294-016-0607-1
PubMed: 27165118


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">fhl1 gene of the fission yeast regulates transcription of meiotic genes and nitrogen starvation response, downstream of the TORC1 pathway.</title>
<author>
<name sortKey="Pataki, Emese" sort="Pataki, Emese" uniqKey="Pataki E" first="Emese" last="Pataki">Emese Pataki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen</wicri:regionArea>
<wicri:noRegion>Debrecen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Weisman, Ronit" sort="Weisman, Ronit" uniqKey="Weisman R" first="Ronit" last="Weisman">Ronit Weisman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Natural and Life Sciences, The Open University of Israel, University Road 1, 4353701, Ranana, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Natural and Life Sciences, The Open University of Israel, University Road 1, 4353701, Ranana</wicri:regionArea>
<wicri:noRegion>Ranana</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sipiczki, Matthias" sort="Sipiczki, Matthias" uniqKey="Sipiczki M" first="Matthias" last="Sipiczki">Matthias Sipiczki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen</wicri:regionArea>
<wicri:noRegion>Debrecen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Miklos, Ida" sort="Miklos, Ida" uniqKey="Miklos I" first="Ida" last="Miklos">Ida Miklos</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary. miklos.ida@science.unideb.hu.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen</wicri:regionArea>
<wicri:noRegion>Debrecen</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27165118</idno>
<idno type="pmid">27165118</idno>
<idno type="doi">10.1007/s00294-016-0607-1</idno>
<idno type="wicri:Area/Main/Corpus">000A57</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A57</idno>
<idno type="wicri:Area/Main/Curation">000A57</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A57</idno>
<idno type="wicri:Area/Main/Exploration">000A57</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">fhl1 gene of the fission yeast regulates transcription of meiotic genes and nitrogen starvation response, downstream of the TORC1 pathway.</title>
<author>
<name sortKey="Pataki, Emese" sort="Pataki, Emese" uniqKey="Pataki E" first="Emese" last="Pataki">Emese Pataki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen</wicri:regionArea>
<wicri:noRegion>Debrecen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Weisman, Ronit" sort="Weisman, Ronit" uniqKey="Weisman R" first="Ronit" last="Weisman">Ronit Weisman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Natural and Life Sciences, The Open University of Israel, University Road 1, 4353701, Ranana, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Natural and Life Sciences, The Open University of Israel, University Road 1, 4353701, Ranana</wicri:regionArea>
<wicri:noRegion>Ranana</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sipiczki, Matthias" sort="Sipiczki, Matthias" uniqKey="Sipiczki M" first="Matthias" last="Sipiczki">Matthias Sipiczki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen</wicri:regionArea>
<wicri:noRegion>Debrecen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Miklos, Ida" sort="Miklos, Ida" uniqKey="Miklos I" first="Ida" last="Miklos">Ida Miklos</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary. miklos.ida@science.unideb.hu.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen</wicri:regionArea>
<wicri:noRegion>Debrecen</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current genetics</title>
<idno type="eISSN">1432-0983</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cluster Analysis (MeSH)</term>
<term>Computational Biology (methods)</term>
<term>Forkhead Transcription Factors (genetics)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Genome-Wide Association Study (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (MeSH)</term>
<term>Meiosis (genetics)</term>
<term>Molecular Sequence Annotation (MeSH)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Mutation (MeSH)</term>
<term>Nitrogen (metabolism)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Schizosaccharomyces (genetics)</term>
<term>Schizosaccharomyces (metabolism)</term>
<term>Schizosaccharomyces pombe Proteins (genetics)</term>
<term>Signal Transduction (MeSH)</term>
<term>Spores, Fungal (genetics)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Analyse de regroupements (MeSH)</term>
<term>Annotation de séquence moléculaire (MeSH)</term>
<term>Azote (métabolisme)</term>
<term>Biologie informatique (méthodes)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Facteurs de transcription Forkhead (génétique)</term>
<term>Mutation (MeSH)</term>
<term>Méiose (génétique)</term>
<term>Protéines de Schizosaccharomyces pombe (génétique)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Schizosaccharomyces (génétique)</term>
<term>Schizosaccharomyces (métabolisme)</term>
<term>Spores fongiques (génétique)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
<term>Étude d'association pangénomique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Forkhead Transcription Factors</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Meiosis</term>
<term>Schizosaccharomyces</term>
<term>Spores, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de transcription Forkhead</term>
<term>Méiose</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Schizosaccharomyces</term>
<term>Spores fongiques</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Multiprotein Complexes</term>
<term>Nitrogen</term>
<term>Schizosaccharomyces</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Complexes multiprotéiques</term>
<term>Schizosaccharomyces</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Biologie informatique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cluster Analysis</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Genome-Wide Association Study</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Molecular Sequence Annotation</term>
<term>Mutation</term>
<term>Promoter Regions, Genetic</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse de regroupements</term>
<term>Annotation de séquence moléculaire</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Mutation</term>
<term>Régions promotrices (génétique)</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Transduction du signal</term>
<term>Étude d'association pangénomique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Environmental changes, such as nutrient limitation or starvation induce different signal transducing pathways, which require coordinated cooperation of several genes. Our previous data revealed that the fhl1 fork-head type transcription factor of the fission yeast could be involved in sporulation, which was typically induced under poor conditions. Since the exact role of Fhl1 in this process was not known, we wanted to identify its downstream targets and to investigate its possible cooperation with another known regulator of sporulation. Gene expression and Northern blot analysis of the fhl1∆ mutant strain revealed the target genes involved in mating and sporulation. Our results also showed that Fhl1 could regulate nutrient sensing, the transporter and permease genes. Since the majority of these genes belonged to the nitrogen starvation response, the possible cooperation of fhl1 and tor2 was also investigated. Comparison of their microarray data and the expression of fhl1
<sup>+</sup>
from a strong promoter in the tor2-ts mutant cells suggested that one part of the target genes are commonly regulated by Fhl1 and Tor2. Since the expression of fhl1
<sup>+</sup>
from a strong promoter could rescue rapamycin and temperature sensitivity and suppressed the hyper-sporulation defect of the tor2-ts mutant cells, we believe that Fhl1 acts in TOR signaling, downstream of Tor2. Thus, this work shed light on certain novel details of the regulation of the sexual processes and a new member of the TOR pathway, but further experiments are needed to confirm the involvement of Fhl1 in nutrient sensing.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27165118</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>02</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-0983</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>63</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Current genetics</Title>
<ISOAbbreviation>Curr Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>fhl1 gene of the fission yeast regulates transcription of meiotic genes and nitrogen starvation response, downstream of the TORC1 pathway.</ArticleTitle>
<Pagination>
<MedlinePgn>91-101</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00294-016-0607-1</ELocationID>
<Abstract>
<AbstractText>Environmental changes, such as nutrient limitation or starvation induce different signal transducing pathways, which require coordinated cooperation of several genes. Our previous data revealed that the fhl1 fork-head type transcription factor of the fission yeast could be involved in sporulation, which was typically induced under poor conditions. Since the exact role of Fhl1 in this process was not known, we wanted to identify its downstream targets and to investigate its possible cooperation with another known regulator of sporulation. Gene expression and Northern blot analysis of the fhl1∆ mutant strain revealed the target genes involved in mating and sporulation. Our results also showed that Fhl1 could regulate nutrient sensing, the transporter and permease genes. Since the majority of these genes belonged to the nitrogen starvation response, the possible cooperation of fhl1 and tor2 was also investigated. Comparison of their microarray data and the expression of fhl1
<sup>+</sup>
from a strong promoter in the tor2-ts mutant cells suggested that one part of the target genes are commonly regulated by Fhl1 and Tor2. Since the expression of fhl1
<sup>+</sup>
from a strong promoter could rescue rapamycin and temperature sensitivity and suppressed the hyper-sporulation defect of the tor2-ts mutant cells, we believe that Fhl1 acts in TOR signaling, downstream of Tor2. Thus, this work shed light on certain novel details of the regulation of the sexual processes and a new member of the TOR pathway, but further experiments are needed to confirm the involvement of Fhl1 in nutrient sensing.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pataki</LastName>
<ForeName>Emese</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weisman</LastName>
<ForeName>Ronit</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Natural and Life Sciences, The Open University of Israel, University Road 1, 4353701, Ranana, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sipiczki</LastName>
<ForeName>Matthias</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Miklos</LastName>
<ForeName>Ida</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary. miklos.ida@science.unideb.hu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>05</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Curr Genet</MedlineTA>
<NlmUniqueID>8004904</NlmUniqueID>
<ISSNLinking>0172-8083</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C500535">Fhl1 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051858">Forkhead Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029702">Schizosaccharomyces pombe Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051858" MajorTopicYN="N">Forkhead Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="Y">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055106" MajorTopicYN="N">Genome-Wide Association Study</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008540" MajorTopicYN="N">Meiosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058977" MajorTopicYN="N">Molecular Sequence Annotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029702" MajorTopicYN="N">Schizosaccharomyces pombe Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013172" MajorTopicYN="N">Spores, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Fork-head transcription factor</Keyword>
<Keyword MajorTopicYN="N">Gene expression analysis</Keyword>
<Keyword MajorTopicYN="N">Nitrogen response</Keyword>
<Keyword MajorTopicYN="N">Schizosaccharomyces pombe</Keyword>
<Keyword MajorTopicYN="N">Sporulation</Keyword>
<Keyword MajorTopicYN="N">TOR pathway</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>03</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>04</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>04</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>2</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27165118</ArticleId>
<ArticleId IdType="doi">10.1007/s00294-016-0607-1</ArticleId>
<ArticleId IdType="pii">10.1007/s00294-016-0607-1</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 1998 Apr;18(4):2118-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9528784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1992 Feb 11;20(3):621</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1741305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2009 Aug;29(16):4584-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19546237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:398-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1706459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4475-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Dec 29;119(7):969-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15620355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2007 Dec;12(12):1357-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18076573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Mar;175(3):1153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17179073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 1993 Feb;104 ( Pt 2):485-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8505375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2004 Nov 1;117(Pt 23):5623-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15509866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Feb;169(2):539-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 Jun;14 (6):3895-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8196631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2004 Aug;3(4):944-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15302827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1999 Sep 24;263(2):465-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10491317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Apr;27(8):3154-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17261596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2014 Mar;34(5):794-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24344203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2012 Jun 15;11(12):2268-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22617386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e42409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22900017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2002 Sep;32(1):143-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12161753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2015 Nov;61(4):503-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25957506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2006;38(9):1476-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16647875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2002 Dec;66(4):579-91, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12456783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Feb 9;24(3):533-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15692568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(10):R217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17927811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2006 Dec;11(12):1367-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1993 Jan 15;123(1):127-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8422996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:795-823</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1991 Nov;5(11):1990-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1657709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2005 Mar 28;348:101-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15777722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013;9(8):e1003715</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23950735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Oct;179(20):6325-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9335279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jul 5;288(27):19649-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23703609</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Hongrie</li>
<li>Israël</li>
</country>
</list>
<tree>
<country name="Hongrie">
<noRegion>
<name sortKey="Pataki, Emese" sort="Pataki, Emese" uniqKey="Pataki E" first="Emese" last="Pataki">Emese Pataki</name>
</noRegion>
<name sortKey="Miklos, Ida" sort="Miklos, Ida" uniqKey="Miklos I" first="Ida" last="Miklos">Ida Miklos</name>
<name sortKey="Sipiczki, Matthias" sort="Sipiczki, Matthias" uniqKey="Sipiczki M" first="Matthias" last="Sipiczki">Matthias Sipiczki</name>
</country>
<country name="Israël">
<noRegion>
<name sortKey="Weisman, Ronit" sort="Weisman, Ronit" uniqKey="Weisman R" first="Ronit" last="Weisman">Ronit Weisman</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000690 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000690 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27165118
   |texte=   fhl1 gene of the fission yeast regulates transcription of meiotic genes and nitrogen starvation response, downstream of the TORC1 pathway.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27165118" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020